Genes required for cellular UNC-6/netrin localization in Caenorhabditis elegans.
نویسندگان
چکیده
UNC-6/Netrin is an evolutionarily conserved, secretory axon guidance molecule. In Caenorhabditis elegans, UNC-6 provides positional information to the axons of developing neurons, probably by establishing a concentration gradient from the ventral to the dorsal side of the animal. Although the proper localization of UNC-6 is important for accurate neuronal network formation, little is known about how its localization is regulated. Here, to examine the localization mechanism for UNC-6, we generated C. elegans expressing UNC-6 tagged with the fluorescent protein Venus and identified 13 genes, which are involved in the cellular localization of VenusUNC-6. For example, in unc-51, unc-14, and unc-104 mutants, the neurons showed an abnormal accumulation of VenusUNC-6 in the cell body and less than normal level of VenusUNC-6 in the axon. An aberrant accumulation of VenusUNC-6 in muscle cells was seen in unc-18 and unc-68 mutants. unc-51, unc-14, and unc-104 mutants also showed defects in the guidance of dorso-ventral axons, suggesting that the abnormal localization of UNC-6 disturbed the positional information it provides. We propose that these genes regulate the process of UNC-6 secretion: expression, maturation, sorting, transport, or exocytosis. Our findings provide novel insight into the localization mechanism of the axon guidance molecule UNC-6/Netrin.
منابع مشابه
The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans.
UNC-51 and UNC-14 are required for the axon guidance of many neurons in Caenorhabditis elegans. UNC-51 is a serine/threonine kinase homologous to yeast Atg1, which is required for autophagy. The binding partner of UNC-51, UNC-14, contains a RUN domain that is predicted to play an important role in multiple Ras-like GTPase signaling pathways. How these molecules function in axon guidance is larg...
متن کاملThe Caenorhabditis elegans P21-activated kinases are differentially required for UNC-6/netrin-mediated commissural motor axon guidance.
P21 activated kinases (PAKs) are major downstream effectors of rac-related small GTPases that regulate various cellular processes. We have identified the new PAK gene max-2 in a screen for mutants disrupted in UNC-6/netrin-mediated commissural axon guidance. There are three Caenorhabditis elegans PAKs. We find that each C. elegans PAK represents a distinct group previously identified in other s...
متن کاملSerotonergic neurosecretory synapse targeting is controlled by netrin-releasing guidepost neurons in Caenorhabditis elegans.
Neurosecretory release sites lack distinct postsynaptic partners, yet target to specific circuits. This targeting specificity regulates local release of neurotransmitters and modulation of adjacent circuits. How neurosecretory release sites target to specific regions is not understood. Here we identify a molecular mechanism that governs the spatial specificity of extrasynaptic neurosecretory te...
متن کاملProtein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans.
UNC-51 is a serine/threonine protein kinase conserved from yeast to humans. The yeast homolog Atg1 regulates autophagy (catabolic membrane trafficking) required for surviving starvation. In C. elegans, UNC-51 regulates the axon guidance of many neurons by a different mechanism than it and its homologs use for autophagy. UNC-51 regulates the subcellular localization (trafficking) of UNC-5, a rec...
متن کاملControl of cell migration during Caenorhabditis elegans development.
In Caenorhabditis elegans, cell migration is guided by localized cues, including molecules such as EGL-17/FGF and UNC-6/netrin. These external cues are linked to an intracellular response to migrate, at least in part, by CED-5, a homolog of DOCK180/MBC, and MIG-2, a Rac-like GTPase. In addition, metalloproteases are required for a cell migration that controls organ shape.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 185 2 شماره
صفحات -
تاریخ انتشار 2010